Automatic extraction of music descriptors from acoustic signals
نویسندگان
چکیده
High-Level music descriptors are key ingredients for music information retrieval systems. Although there is a long tradition in extracting information from acoustic signals, the field of music information extraction is largely heuristic in nature. We present here a heuristicbased generic approach for extracting automatically high-level music descriptors from acoustic signals. This approach is based on Genetic Programming, used to build relevant features as functions of mathematical and signal processing operators. The search of relevant features is guided by specialized heuristics that embody knowledge about the signal processing functions built by the system. Signal processing patterns are used in order to control the general processing methods. In addition, rewriting rules are introduced to simplify overly complex expressions, and a caching system further reduces the computing cost of each cycle. Finally, the features build by the system are combined into an optimized machine learning descriptor model, and an executable program is generated to compute the model on any audio signal. In this paper, we describe the overall system and compare its results against traditional approaches in musical feature extraction à la Mpeg7.
منابع مشابه
Automatic extraction of music descriptors from acoustic signals using EDS
High-Level music descriptors are key ingredients for music information retrieval systems. Although there is a long tradition in extracting information from acoustic signals, the field of music information extraction is largely heuristic in nature. We present here a heuristic-based generic approach for extracting automatically high-level music descriptors from acoustic signals. This approach is ...
متن کاملEvolving Automatically High-Level Music Descriptors from Acoustic Signals
High-Level music descriptors are key ingredients for music information retrieval systems. Although there is a long tradition in extracting information from acoustic signals, the field of music information extraction is largely heuristic in nature. We present here a heuristic-based generic approach for extracting automatically high-level music descriptors from acoustic signals. This approach is ...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملAutomatic Drum Sound Description for Real-World Music Using Template Adaptation and Matching Methods
This paper presents an automatic description system of drum sounds for real-world musical audio signals. Our system can represent onset times and names of drums by means of drum descriptors defined in the context of MPEG-7. For their automatic description, drum sounds must be identified in such polyphonic signals. The problem is that acoustic features of drum sounds vary with each musical piece...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004